h1_key

当前位置:首页 >新闻资讯 > 技术文章>亚德诺>各种类型的混频器基础知识大盘点!
各种类型的混频器基础知识大盘点!
2022-10-29 1079次

  顾名思义,混频器将两个输入信号混合,产生其频率之和或频率之差。利用混频器产生比输入信号高的输出频率时(两个频率相加),称为上变频;利用混频器产生比输入信号低的输出频率时,称为下变频。

  一、单//三平衡无源混频器

  最常见的混频器类型是无源混频器。此类混频器有不同的设计样式,如单端、单平衡、双平衡和三平衡等。使用最广泛的架构是双平衡混频器。这种混频器很受欢迎,因为其性能出色,实现和架构简单,性价比高,并能提供多种选项。

  无源混频器通常以简易性而出名,不需要任何外部直流电源或特殊设置。此类混频器还有其他为人所称道的特性,包括宽带宽性能、良好的动态范围、低噪声系数(NF)以及端口间良好的隔离。此类混频器的设计及其无外部直流电源要求的优势,使得混频器输出端的噪声系数很低。一个较好的经验法则是,无源混频器的噪声系数等于其转换损耗。此类混频器非常适合有低噪声系数要求的应用,而有源混频器无法满足这一要求。此类混频器擅长的另一个领域是高频和宽带宽设计。从RF一直到毫米波频率,它们都能提供良好的性能。混频器的另一个重要特性是不同端口之间的隔离。此特性往往决定了具体应用可使用何种混频器。三平衡无源混频器的隔离性能通常最佳,但其架构复杂,而且其他特性(如线性度等)有些不足;双平衡无源混频器的端口间隔离性能良好,同时架构较简单。对大多数应用而言,双平衡混频器实现了隔离度、线性度和噪声系数的最佳组合。

  就信号链整体而言,线性度(也常用三阶交调截点IIP3来衡量)RF和微波设计的最重要特性之一。无源混频器通常以高线性度性能而出名。遗憾的是,为了实现最佳性能,无源混频器需要高LO输入功率。多数无源混频器使用二极管或FET晶体管,需要大约13 dBm20 dBmLO驱动,这对某些应用情形来说是相当高的。高LO驱动要求是无源混频器的最大弱点之一。无源混频器的另一个弱点是混频器输出端的转换损耗。此类混频器是无增益模块的无源元件,故而混频器输出端往往有很高的信号损耗。例如,若混频器的输入功率为0 dBm,且混频器有9 dB的转换损耗,则混频器输出将是–9 dBm。总的来说,此类混频器非常适合测试测量和军用市场

  无源混频器的优势

  宽带宽

  高动态范围

  低噪声系数

  高端口间隔离

  

12.png 

1. I/Q混频器框图和镜像抑制频域图

  二、I/Q镜像抑制(IRM)混频器

  I/Q混频器是一类无源混频器,它不但拥有常规无源混频器的优势,还具备其他优势,即不通过任何外部滤波便可消除不需要的镜像信号。此类混频器用作下变频器时也称为IRM(镜像抑制混频器),用作上变频器时则称为SSB(单边带混频器)I/Q混频器由两个双平衡混频器构成,LO信号一分为二,然后经过相移而相差90°(一个混频器为,另一个混频器为90°)。通过此相移,混频器得以仅产生一个边带(需要的)信号,而抑制不需要的信号。

  图2在同一频谱图上显示了I/Q混频器(紫色线)和双平衡混频器(蓝色线)的性能。可以看到,I/Q混频器通过提供45 dB抑制来抑制不需要的低边带,而双平衡混频器同时产生了高边带和低边带。

  

13.png 

2. HMC773A无源混频器和HMC8191 I/Q混频器的频谱图,IF输入为1 GHzLO输入为16 GHz

  像双平衡无源混频器一样,I/Q混频器也需要高LO输入功率。从架构看,I/Q混频器采用两个双平衡混频器,因此与两个双平衡混频器相比,所需的LO驱动往往要再多出大约3 dBI/Q混频器对精密平衡的相位和幅度输入匹配很敏感。输入信号、混合结构、系统板或混频器本身的任何偏离90°的相移或幅度失衡,都会直接影响镜像抑制水平。通过外部校准混频器以改善性能,可以校正这些误差的影响。

  由于边带抑制特性,I/Q混频器常用于需要消除边带但不通过外部滤波的应用,同时它能提供非常好的噪声系数和线性度。此类市场的常见例子是微波点对点回程通信、测试测量仪器仪表和军事用途。

  I/Q混频器的优势

  固有的镜像抑制

  无需昂贵的滤波

  良好的幅度和相位匹配

  三、有源混频器

  有源混频器主要有两类:单平衡和双平衡(也称为吉尔伯特单元)混频器。有源混频器的优势是LO端口和RF输出端内置增益模块。此类混频器会为输出信号提供一定的转换增益,并且输入LO功率要求较低。有源混频器的典型LO输入功率是0 dBm左右,远低于大多数无源混频器。

  有源混频器常常还集成LO倍频器,用来将LO频率倍乘到更高的频率。此倍频器对客户非常有利,无需高LO频率便可驱动混频器。有源混频器通常具有很好的端口间隔离。然而,其缺点是噪声系数较高,而且多数情况下线性度较低。对输入直流电源的需求影响了有源混频器的噪声系数和线性度。有源混频器常用于通信和军用市场,低LO驱动和集成转换增益的需求对此类市场可能很重要。在测试测量市场,有源混频器主要用作IF子部分的第三级或最后一级混频器,或用于低端仪表(集成化和高性价比设计比噪声系数更重要)

  有源混频器的优势

  高集成度、小尺寸

  ●LO驱动要求低

  集成LO倍频器

  良好的隔离,但线性度和噪声系数不佳

  四、集成频率转换混频器

  由于客户需要更完整的信号链解决方案,所以集成频率转换器变得颇受欢迎。此类器件由不同功能模块构成,这些模块连接在一起形成一个子系统,使得客户的最终系统设计更简单。此类器件在同一封装或芯片中集成不同模块,例如混频器、PLL(锁相环)VCO(压控振荡器)、倍频器、增益模块、检波器等等。可将此类器件制作成SIP(系统化封装),即把多个裸片组装到同一封装中,或一个裸片包括所有设计模块。

  通过将多个器件集成到一个芯片或封装中,频率转换器可以给设计人员带来很大好处,比如:尺寸更小、器件更少、设计架构更简单,更重要的是,产品上市时间更快。

  

14.png 

3. 集成频率转换混频器HMC6147A的功能框图

 

  • MICROCHIP(微芯) PIC18F26K22-I/SS 产品参数介绍
  • MICROCHIP(微芯)的 PIC18F26K22-I/SS 是一款极具特色和优势的微控制器,在众多应用中展现出卓越的性能和功能。PIC18F26K22-I/SS 采用了高性能的 18 位 CPU 内核,运行速度高达 64 MHz,具备强大的数据处理能力,能够高效地执行复杂的指令和算法。其工作电压范围在 2.3V 至 5.5V 之间,为不同电源环境下的应用提供了良好的适应性。
    2024-07-31 95次
  • ADI(亚德诺)ADAU1701JSTZ音频处理器技术解析
  • 在音频处理领域,ADI(亚德诺)的 ADAU1701JSTZ 是一款性能出色的音频处理器,为高质量音频应用提供了强大的支持。ADAU1701JSTZ 采用先进的SigmaDSP®内核,其工作频率可达50 MHz,能够快速且高效地处理音频数据,确保实时性和精确性。
    2024-07-15 89次
  • 了解ADSP-21489BSWZ-4B数字信号处理器
  • 在数字信号处理的舞台上,ADI(亚德诺)的 ADSP-21489BSWZ-4B 以其卓越的性能和先进的特性脱颖而出,成为众多应用的核心驱动力。ADSP-21489BSWZ-4B 基于SHARC®架构,工作频率高达 400 MHz。这种高频率赋予了它强大的数据处理能力,能够迅速执行复杂的数字信号处理算法和指令,确保在实时性要求严苛的应用中也能迅速响应。
    2024-07-15 97次
  • ADI(亚德诺)ADSP-21489KSWZ-5B技术详解
  • ADI(亚德诺)的 ADSP-21489KSWZ-5B 是一款性能卓越、功能强大的处理器,为各种复杂的信号处理任务提供了高效可靠的解决方案。ADSP-21489KSWZ-5B 基于先进的SHARC®架构,工作频率高达 500 MHz。这种高频率使得它能够以极快的速度处理数据和执行指令,具备强大的运算能力和数据处理能力,能够在短时间内完成大量复杂的数字信号处理任务,满足对实时性和处理速度要求极高的应用场景。
    2024-07-15 93次
  • ADAU1401AWBSTZ-RL音频处理器技术解析
  • 在音频处理领域,ADI(亚德诺)的 ADAU1401AWBSTZ-RL 是一款性能卓越、功能丰富的音频处理器,为各种音频应用提供了强大的支持。ADAU1401AWBSTZ-RL 基于 SigmaDSP® 内核架构,具有强大的数字信号处理能力。其工作频率高达 294.912 MHz,使得它能够快速而高效地处理音频数据,轻松应对复杂的音频算法和处理任务。
    2024-07-15 81次

    万联芯微信公众号

    元器件现货+BOM配单+PCBA制造平台
    关注公众号,优惠活动早知道!
    10s
    温馨提示:
    订单商品问题请移至我的售后服务提交售后申请,其他需投诉问题可移至我的投诉提交,我们将在第一时间给您答复
    返回顶部