h1_key

当前位置:首页 >新闻资讯 > 技术文章>亚德诺>PCB电源时序控制IC是什么?
PCB电源时序控制IC是什么?
2022-11-30 734次

  随着集成电路时代的到来,许多功能模块被集成到一个IC因此,有必要使用多个电源为这些模块供电。有时这些电源的电压是一样的,但通常是不同的。市场上的电影系统(SoC)IC越来越多的电源需要时序控制和管理。

  ADI企业来说,企业的数据手册会提供足够的信息,指导设计工程师指导每个企业的数据手册IC设计正确的通电序列。然而,有些,IC明确规定适当的通电序列。ADI企业的很多IC,情况都是这样。使用多个电源的。IC中,如转化器(包括模数转换器)ADC和数模转换器DAC),数字信号转换器(DSP),音频/视频、射频和许多其他混合信号IC其中,这一要求相当普遍。本质上,包括一些带数字引擎的模拟输入/输出IC所有这些都属于这一类,可能需要特定的电源时序控制。IC可能有独立的模拟电源和数字电源,有的甚至有数字输入/导出电源。详情请参考以下具体示例。

  本应用笔记讨论设计工程师在新设计中必须考虑的某些更微妙的电源问题,特别是当IC需要多个不同的电源时。目前,一些较常用的电源电压是:+1.8V、+2.0V、+2.5V、+3.3V、+5V、−5V、+12V和−12V。


  PULSAR ADC示例——绝对最大额定值

  ADI公司的所有数据手册都含有“绝对最大额定值”(AMR)部分,它说明为避免造成破坏,对引脚或器件可以施加的最大电压、电流或温度。

  AD7654PulSAR 16位ADC是采用三个(或更多)独立电源的混合信号ADC的范例。这些ADC需要数字电源(DVDD)、模拟电源(AVDD)和数字输入/输出电源(OVDD)。它们是ADC,用于将模拟信号转换成数字代码,因此需要一个模拟内核来处理传入的模拟输入。数字内核负责处理位判断过程和控制逻辑。I/O内核用于设置数字输出的电平,以便与主机逻辑接口(电平转换)。ADC的电源规格可以在相应数据手册的“绝对最大额定值”部分找到。表1摘自AD7654 (Rev. B)数据手册的“绝对最大额定值”部分。



  表1. AD7654的绝对最大额定值(Rev. B)


  注意,表1中所有三个电源的范围都是−0.3V至+7V。相对于DVDD和OVDD,AVDD的范围是+7V至−7V,这就确认了AVDD和DVDD无论哪一个先上电都是可行的。此外,AVDD和OVDD无论哪一个先上电也是可行的。然而,DVDD与OVDD之间存在限制。技术规格规定,OVDD最多只能比DVDD高0.3V,因此DVDD必须在OVDD之前或与之同时上电。如果OVDD先上电(假设5V),则DVDD在上电时比OVDD低5V,这不符合“绝对最大额定值”要求,可能会损坏器件。

  模拟输入INAx、INBx、REFx、INxN和REFGND的限制是:这些输入不得超过AVDD +0.3V或AGND −0.3V。这说明,如果模拟信号或基准电压源先于AVDD存在,则模拟内核很可能会上电到闩锁状态。这通常是一种无损状况,但流经AVDD的电流很容易逐步升至标称电流的10倍,导致ADC变得相当热。这种情况下,内部静电放电(ESD)二极管变为正偏,进而使模拟电源上电。为解决这个问题,输入和/或基准电压源在ADC上电时应处于未上电或未连接状态。

  同样,数字输入电压范围为−0.3V至DVDD +0.3V。这说明,数字输入必须小于DVDD +0.3V。因此,在上电时,DVDD必须先于微处理器/逻辑接口电路或与之同时上电。与上述模拟内核情况相似,这些引脚上的ESD二极管也可能变为正偏,使数字内核上电到未知状态。

  AD7621、AD7622、AD7623、AD7641和AD7643等PulSAR ADC速度更快,是该系列的新型器件,采用更低的2.5V电源(AD7654则采用5V电源)。AD7621和AD7623具有明确规定的上电序列。表2摘自AD7621 (Rev.0)数据手册的“绝对最大额定值”部分。



  表2. AD7621的绝对最大额定值(Rev. 0)


  同样,OVDD与DVDD之间存在限制。“绝对最大额定值”规定:OVDD必须小于或等于DVDD+0.3V,而DVDD则必须小于2.3V。一旦DVDD在上电期间达到2.3V,该限制便不再适用。如果不遵守该限制,AD7621(和AD7623)可能会受损(见图1)。



  图1. 可能的上电/关断序列—AD7621 (Rev. 0)


  因此,一般上电序列可能是这样的:AVDD、DVDD、OVDD、VREF。但是,每个应用都不一样,需要具体分析。注意,器件关断与器件上电同样重要,切记遵守同样的规格要求。图1所示为AD7621的典型上电/关断序列。

  对于这些ADC,模拟输入和基准电压源的情况与上文所述相同。对任何模拟输入引脚施加电压都可能导致ESD二极管变为正偏,从而使模拟内核上电到未知状态。

  这些ADC的数字输入和输出略有不同,因为这些器件应支持5 V数字输入。这些ADC是AD7654的速度升级版本,数字输入和输出均与OVDD电源相关,因为它能支持更高的3.3V电压。注意:数字输入限制为5.5V,而AD7654则为DVDD+0.3V。


  Σ-Δ型ADC示例

  AD7794 Σ-Δ型24位ADC是另一个很好的例子。表3摘自AD7794 (Rev. D)数据手册的“绝对最大额定值”部分。




  表3. AD7794的绝对最大额定值(Rev. D)


  该ADC的问题与基准电压有关,它必须小于AVDD + 0.3 V。因此,AVDD必须先于基准电压或与之同时上电。


  电源时序控制器

  ADI公司提供许多电源时序控制器件。一般而言,其工作原理是:当第一个调节器的输出电压达到预设阈值时,就会开始一段时间延迟,延迟结束后才会使能后续调节器上电。关断期间的程序与此相似。时序控制器也可以用于控制电源良好信号等逻辑信号的时序,例如:对器件或微处理器施加一个复位信号,或者简单地指示所有电源均有效。

  如今大部分要求高速和低功耗的电路PCB上都需要多个电源,例如:+1.8V、+2.0V、+2.5V、+3.3V、+5V、−5V、+12V和−12V。为PCB上的这些电源供电并不是一件轻而易举的事情。必须仔细分析,设计一个正确可靠的上电和关断序列。采用分立设计变得越来越困难,解决之道就是采用电源时序控制IC,只要改变一下代码就能改变上电顺序,而不用变更PCB布局布线。

  • MICROCHIP(微芯) PIC18F26K22-I/SS 产品参数介绍
  • MICROCHIP(微芯)的 PIC18F26K22-I/SS 是一款极具特色和优势的微控制器,在众多应用中展现出卓越的性能和功能。PIC18F26K22-I/SS 采用了高性能的 18 位 CPU 内核,运行速度高达 64 MHz,具备强大的数据处理能力,能够高效地执行复杂的指令和算法。其工作电压范围在 2.3V 至 5.5V 之间,为不同电源环境下的应用提供了良好的适应性。
    2024-07-31 332次
  • ADI(亚德诺)ADAU1701JSTZ音频处理器技术解析
  • 在音频处理领域,ADI(亚德诺)的 ADAU1701JSTZ 是一款性能出色的音频处理器,为高质量音频应用提供了强大的支持。ADAU1701JSTZ 采用先进的SigmaDSP®内核,其工作频率可达50 MHz,能够快速且高效地处理音频数据,确保实时性和精确性。
    2024-07-15 344次
  • 了解ADSP-21489BSWZ-4B数字信号处理器
  • 在数字信号处理的舞台上,ADI(亚德诺)的 ADSP-21489BSWZ-4B 以其卓越的性能和先进的特性脱颖而出,成为众多应用的核心驱动力。ADSP-21489BSWZ-4B 基于SHARC®架构,工作频率高达 400 MHz。这种高频率赋予了它强大的数据处理能力,能够迅速执行复杂的数字信号处理算法和指令,确保在实时性要求严苛的应用中也能迅速响应。
    2024-07-15 361次
  • ADI(亚德诺)ADSP-21489KSWZ-5B技术详解
  • ADI(亚德诺)的 ADSP-21489KSWZ-5B 是一款性能卓越、功能强大的处理器,为各种复杂的信号处理任务提供了高效可靠的解决方案。ADSP-21489KSWZ-5B 基于先进的SHARC®架构,工作频率高达 500 MHz。这种高频率使得它能够以极快的速度处理数据和执行指令,具备强大的运算能力和数据处理能力,能够在短时间内完成大量复杂的数字信号处理任务,满足对实时性和处理速度要求极高的应用场景。
    2024-07-15 312次
  • ADAU1401AWBSTZ-RL音频处理器技术解析
  • 在音频处理领域,ADI(亚德诺)的 ADAU1401AWBSTZ-RL 是一款性能卓越、功能丰富的音频处理器,为各种音频应用提供了强大的支持。ADAU1401AWBSTZ-RL 基于 SigmaDSP® 内核架构,具有强大的数字信号处理能力。其工作频率高达 294.912 MHz,使得它能够快速而高效地处理音频数据,轻松应对复杂的音频算法和处理任务。
    2024-07-15 262次

    万联芯微信公众号

    元器件现货+BOM配单+PCBA制造平台
    关注公众号,优惠活动早知道!
    10s
    温馨提示:
    订单商品问题请移至我的售后服务提交售后申请,其他需投诉问题可移至我的投诉提交,我们将在第一时间给您答复
    返回顶部