其实,光子芯片并不是一件新鲜事物。早在1969年,集成光学,也称积体光学的概念就已被提出。到了上世纪80年代,光子芯片也开始了相应的研究,并且由于物理特性,光子芯片比电子芯片有更大的发展潜力。
光子芯片
光芯片一般指光子芯片。用于完成光电信号的转换,是核心器件,分为有源光芯片和无源光芯片。光芯片包括了激光器、调制器、耦合器、波分复用器、探测器等。在运营商的核心交换网设备、波分复用设备、以及即将普及的5G设备中有大量的光芯片。
光子芯片原理
原理:光子芯片研究人员将磷化铟的发光属性和硅的光路由能力整合到单一混合芯片中。当给磷化铟施加电压的时候,光进入硅片的波导,产生持续的激光束,这种激光束可驱动其他的硅光子器件。这种基于硅片的激光技术可使光子学更广泛地应用于计算机中,因为采用大规模硅基制造技术能够大幅度降低成本。
光子芯片的优势
光子芯片简单说就是利用光信号进行数据获取、传输、计算、存储和显示的芯片。”相对于电子驱动的集成电路,光子芯片的独特优势十分明显。未来,无论是互联网、5G还是物联网领域,在基础设施方面都离不开光纤和光学器件。
相比传统的电子芯片,光子芯片有很多优势,主要表现为高速率和低功耗。光信号以光速传输,速度得到巨大提升;理想状态下,光子芯片的计算速度比电子芯片快约1000倍。光子计算消耗能量少,光计算功耗有望低至每比特10—18焦耳(10—18J/bit),相同功耗下,光子器件比电子器件快数百倍。
相比电子芯片,光子芯片的性能几乎在每个方面都有明显的优势。在传输速度上,光子脉冲的信息速率可以达到几十TB/s,从而使“存储墙”的问题不复存在。
而在能耗方面,根据推算,光子元器件的能耗仅有电子元器件的千分之一。有数据指出,根据目前的发展趋势,在未来五年以集成电路为基础的数字产业可能会消耗全球每年电力供应的20%,而光子元器件的发展,就可以大幅缓解能源压力。
除此之外,目前让相关厂商和消费者都十分头痛的芯片发热等问题,在光子芯片上同样不会出现。
可以说,从理论上来看,光子芯片确实是数字产业的未来。
那么问题就来了,光子芯片开始研究的时间与电子芯片相差无几,为何电子芯片如今一骑绝尘,成为芯片领域的绝对主流呢?
答案其实很简单:相比相对“乖巧”的电子,光子的“性格”更难以把控。为了让光子芯片早日成为现实,科学家们一直在研发可以替代电晶体管功能元器件,但始终无法在准确控制光信号的同时缩小元器件的体积。这样一来,电子芯片自然就成为市场的主流了。