h1_key

当前位置:首页 >新闻资讯 > 技术文章>模拟芯片ADC/DAC芯片
模拟芯片ADC/DAC芯片
2023-05-30 1709次

  一、模拟芯片概述

ADC就是模数转换器。是将模拟量转换成以二进制数值表示的离散信号的转换器,简称A/D转换器。DAC就是数模转换器。将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器。简称D/A转换器。

 

 

  二、ADC/DAC芯片

  1、数据转换器主要分为模数转换器(ADC)和数模转换器(DAC)两类:

  

 

 

●模数转换器ADC:负责以连续的时间间隔测量信号电压以获取连续的模拟信号并将其转换成数字信号的器件。通过ADC将多数无法被数字系统识别与处理的模拟信号转换成数字信号,可以提高信号分析能力,实现更优质的存储方式和更精确的传输。一般适用于数字传感器芯片、传统封装片、集成电路、SOC芯片等各类涉及数字处理的应用场景。

  ●数模转换器DAC:负责将数字信号转换成模拟信号的器件,主要特性指标包括分辨率、转换速度、转换误差等,模数转换器中一般都要用到数模转换器,广泛应用于各种数字系统中。

  2.ADC/DAC的主要参数

  ●分辨率:以输出二进制(或十进制)数的位数来表示。位数越高,分辨率越高。例如7606是16位

  ●转换速率:进行数据转换的速率。用MSPS表示,数值约大,速度越快。7606的速率为125MSPS

  3、ADC/DAC芯片应用场景

  当前ADC芯片的下游需求主要集中在通信设备(35%以上)、汽车电子(22%)、工业(20%)、消费电子(10%)等领域。

  

 

 

  ●消费电子市场属于低端ADC芯片,而高端芯片的市场包括有线/无线通信、汽车电子、军工、工业、航空航天、医疗仪器等。

  ●根据Databeans统计,高端ADC芯片的单价是低端ADC芯片的数倍,比如高速率ADC占总出货量不到10%,但是占据行业接近50%的销售额。

未来几年支撑ADC芯片增长的主要驱动因素是5G、人工智能、物联网、汽车电子等新兴领域,这些领域所需的产品或技术对信号处理的需求(包括速度、精度、噪音等)增长迅速,不断迭代更新。

 

 

  三、ADC/DAC芯片工作原理

  通常情况下,A/D转换一般要经过取样、保持、量化及编码4个过程。

  1、取样和保持

  取样是将随时间连续变化的模拟量转换为时间离散的模拟量。取样过程示意图如图1所示。图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号vO(t)为输入信号v1,而在(Ts-τ)期间,传输门关闭,输出信号vO(t)=0。电路中各信号波形如图(b)所示。

  

 

1 取样电路结构(a)

  

 

1 取样电路中的信号波形(b)

 

  通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。

  取样定理:设取样信号S(t)的频率为fs,输入模拟信号v1(t)的最高频率分量的频率为fimax,则fs与fimax必须满足下面的关系fs≥2fimax,工程上一般取fs>(3~5)fimax。

  将取样电路每次取得的模拟信号转换为数字信号都需要一定时间,为了给后续的量化编码过程提供一个稳定值,每次取得的模拟信号必须通过保持电路保持一段时间。

  取样与保持过程往往是通过取样-保持电路同时完成的。取样-保持电路的原理图及输出波形如图2所示。

  

 

2 取样-保持电路原理图

 

 

2 取样-保持电路波形图

 

  电路由输入放大器A1、输出放大器A2、保持电容CH和开关驱动电路组成。电路中要求A1具有很高的输入阻抗,以减少对输入信号源的影响。为使保持阶段CH上所存电荷不易泄放,A2也应具有较高输入阻抗,A2还应具有低的输出阻抗,这样可以提高电路的带负载能力。一般还要求电路中AV1·AV2=1。

  现结合图2来分析取样-保持电路的工作原理。在t=t0时,开关S闭合,电容被迅速充电,由于AV1·AV2=1,因此v0=vI,在t0~t1时间间隔内是取样阶段。在t=t1时刻S断开。若A2的输入阻抗为无穷大、S为理想开关,这样可认为电容CH没有放电回路,其两端电压保持为v0不变,图11.8.2(b)中t1到t2的平坦段,就是保持阶段。

  取样-保持电路以由多种型号的单片集成电路产品。如双极型工艺的有AD585、AD684;混合型工艺的有AD1154、SHC76等。

  2、量化与编码

  数字信号不仅在时间上是离散的,而且在幅值上也是不连续的。任何一个数字量的大小只能是某个规定的最小数量单位的整数倍。为将模拟信号转换为数字量,在A/D转换过程中,还必须将取样-保持电路的输出电压,按某种近似方式归化到相应的离散电平上,这一转化过程称为数值量化,简称量化。量化后的数值最后还需通过编码过程用一个代码表示出来。经编码后得到的代码就是A/D转换器输出的数字量。

  量化过程中所取最小数量单位称为量化单位,用△表示。它是数字信号最低位为1时所对应的模拟量,即1LSB。

  在量化过程中,由于取样电压不一定能被△整除,所以量化前后不可避免地存在误差,此误差称之为量化误差,用ε表示。量化误差属原理误差,它是无法消除的。A/D 转换器的位数越多,各离散电平之间的差值越小,量化误差越小。

  量化过程常采用两种近似量化方式:只舍不入量化方式和四舍五入的量化方式。

  (1)、只舍不入量化方式

  以3位A/D转换器为例,设输入信号v1的变化范围为0~8V,采用只舍不入量化方式时,取△=1V,量化中不足量化单位部分舍弃,如数值在0~1V之间的模拟电压都当作0△,用二进制数000表示,而数值在1~2V之间的模拟电压都当作1△,用二进制数001表示……这种量化方式的最大误差为△。

  (2)、四舍五入量化方式

  如采用四舍五入量化方式,则取量化单位△=8V/15,量化过程将不足半个量化单位部分舍弃,对于等于或大于半个量化单位部分按一个量化单位处理。它将数值在0~8V/15之间的模拟电压都当作0△对待,用二进制000表示,而数值在8V/15~24V/15之间的模拟电压均当作1△,用二进制数001表示等。

  3、比较

  采用前一种只舍不入量化方式最大量化误差│εmax│=1LSB,而采用后一种有舍有入量化方式│εmax│=1LSB/2,后者量化误差比前者小,故为多数A/D转换器所采用。

  随着集成电路的飞速发展,A/D转换器的新设计思想和制造技术层出不穷。为满足各种不同的检测及控制需要而设计的结构不同、性能各异的A/D转换器应运而生。

 

  • 一文读懂什么是IMU传感器?
  • IMU(惯性测量单元,Inertial Measurement Unit) 是一种用于测量物体运动状态的电子设备,通过组合多种传感器来提供三维空间中的加速度、角速度及姿态信息。
    2025-03-05 472次
  • 一文读懂什么是图像传感器?
  • 图像传感器是一种将光学图像转换为电信号的电子器件,广泛应用于数码相机、智能手机、安防监控、医疗影像、自动驾驶等领域。它是现代成像系统的核心组件,决定了图像的清晰度、色彩还原能力和动态范围等关键性能。
    2025-03-03 104次
  • 一文读懂什么是加速度传感器?
  • 加速度传感器(Accelerometer) 是一种测量物体线性加速度的装置,可检测物体在空间中沿X、Y、Z轴的平移运动(包括静态重力加速度和动态运动加速度)。
    2025-02-26 203次
  • XILINX赛灵思 XC7K160T-2FBG484E
  • 赛灵思(XILINX)作为行业的领军企业,其推出的 XC7K160T-2FBG484E 更是一款备受瞩目的产品。XC7K160T-2FBG484E 属于赛灵思 7 系列 FPGA(现场可编程门阵列),具有强大的性能和丰富的功能。
    2024-09-25 363次
  • XILINX赛灵思 XCKU085-2FLVA1517E
  • 赛灵思(XILINX)作为全球领先的可编程逻辑器件供应商,其推出的 XCKU085-2FLVA1517E 以卓越的性能和丰富的功能,成为众多电子工程师和设计师的首选。XCKU085-2FLVA1517E 属于赛灵思 UltraScale 架构系列产品,采用先进的 20 纳米工艺技术制造。这一工艺不仅带来了更高的性能,还实现了更低的功耗,为各种复杂的电子系统设计提供了理想的解决方案。
    2024-09-25 315次

    万联芯微信公众号

    元器件现货+BOM配单+PCBA制造平台
    关注公众号,优惠活动早知道!
    10s
    温馨提示:
    订单商品问题请移至我的售后服务提交售后申请,其他需投诉问题可移至我的投诉提交,我们将在第一时间给您答复
    返回顶部